(25\%) 1. Give definitions for each of the following standard Haskell functions; for each function, also include a comment (in the format used in this module) to clearly and concisely describe its purpose:

a)	take	Q1A - take n xs Take n ltems from the lust xss $\begin{aligned} & \text { take:: Int } \rightarrow {[a] \rightarrow[a] } \\ & \text { take } \cap[]= {[] } \\ & \text { take } \cap(x: x s) \mid n>0=x+\operatorname{take}(n-1)(x s) \\ & \text { lotherwise }=[] \end{aligned}$ used when trying to get the first in items from any list -- take $\mathrm{n} x \mathrm{~s}$, take n items from the list xs -- Used when we want to try and get rid of the first n items take n[]$=[]$ take $n(x: x s) \mid n>0=x$ take $(n-1)(x s) \mid$ otherwise $=[]$
b)	drop	QIB - drop n XS Drop the first n Items from the list $x s$ $\begin{aligned} & \text { drop:: Int } \rightarrow[a] \rightarrow[a] \\ & \text { drop } \cap[]=[] \\ & \text { drop } \cap(x: x s) \mid \cap>0=\operatorname{drop}(n-1)(x s) \\ & \\ & \qquad \text { other ise }=(x: x s) \end{aligned}$ Used When to get rid of the first r Hems from any (list -- drop n xs drop the first n items form the list xs -- Used when we want to get rid of the first n items from any list drop n[] = [] drop $n(x: x s) \mid n>0=\operatorname{drop}(n-1)(x s)$ otherwise $=(x: x s)$

c)	takeWhile	Q1 c - take While p xs Take the first set of ltems from xs that match the predicate P take While $P \quad[]=[]$ take Whice $P(x: x s) \mid(P x)=x$: take Whice $P(x s)$ $\text { lotherwise }=[]$ Used when we want a list made up of the first so many items in a list that match the predicate? Trpe: take While:: $(a \rightarrow$ Bool $) \rightarrow[a] \rightarrow[a]$ -- takeWhile p xs take the first set of items from xs that match the predicate p -- Used when we want a list made up of the first so many items in a list that match the predicate p takeWhile p[]= [] takeWhile $p(x: x s) \mid(p x)=x$:takeWhile $p(x s) \mid$ otherwise $=[]$
d)	dropWhile	Q1D -- drop While P Xs drop the First seavence or elements in x s that all match predicate P droplwhice $::(a \rightarrow B \circ o t) \rightarrow[a] \rightarrow[a]$ dropWhice $P[]=[]$ - drop While $P\left(x ; x_{S}\right) \mid(P x)=$ drop While $P\left(x_{5}\right)$ 5 10therwise $=X S$ Used when we want to diop the First so many elements in a list which match a predicate -- dropWhile xs drop the first sequence of elements in xs that all match predicate p. -- Used when we want to drop the first so many elememts in a list which match a predicate. dropWhile :: (a -> bool) -> [a] -> [a] dropWhile p [] = [] dropWhile $p(x: x s) \mid(p x)=$ dropWhile $p(x s) \mid$ otherwise $=x s$
e)	zipWith	Q1e -- ZipWith f xs ys combine the elements of xs with the elements of ys usins F until elther list is empty 210 With : : $(a \rightarrow \underset{b}{\alpha} \rightarrow \alpha) \rightarrow[a] \rightarrow[\not \subset] \rightarrow[\notin \cdot]$ 4 2ip With $-\left[\begin{array}{c}V \\ \square\end{array}=[]\right.$ 210 With - []$-[]$ 20 With $f(x: x s)(y: y s)=(f x y)$: ziphith $f(x s)(y s)$

	-- zipWith $f x$ sys combine the elements of $x s$ with the elements of $y s u s i n g f$ until either list is empty. $\begin{aligned} & \text { zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] } \\ & \text { zipWith__[] =[] } \\ & \text { zipWith_[]_=[] } \\ & \text { zipWith } f(x: x s)\left(y: y s _=(f x y): \text { zipWith } f(x s)(y s)\right. \end{aligned}$

(35%) 2. A stairs is a finite list of two or more integers such that the difference between every pair of adjacent items is a non-zero constant. For example, each of these lists is a stairs:
$[5,8]$
$[1,3,5,7,9]$
$[3,2,1,0,-1,-2]$
whereas none of these lists is a stairs:
[]
[4]
$[1,3,5,8,9]$
$[1,2,3,2,1]$
$[7,7,7]$.

Write a Haskell function isStairs to test if a given finite list of integers is a stairs.

```
Answer ???
```



```
- Is Different By \(n\) xs does every item in XS
differ by the number \(n\)
is DifFerent By \(: \therefore\) Nam \(a \Rightarrow a \rightarrow[a]\)
is Different By - []\(=\) True
is Different By \(\cap\left(x_{1}: x_{2}: x_{5}\right)=\left(x_{1}-x_{2}==n\right) \gamma 8\)
                                    is Different By \(n\) ( \(x 2: x 5\) )
is Different By \(-(x:[])=\) True
    or: \({ }^{\uparrow}[-]\)
isStairs :: [Integer] -> Boob
is Stairs (x1:x2:x3) | (xi \(-\mathrm{x} 2)==0=\) False | otherwise isDifferentBy (x1-x2)(x2:x3)
-- isDifferentBy \(n\) xs does every item in xs differ by the number \(n\)
isDifferentBy _ [] = True
isDifferentBy \(n(x 1: x 2: x 3) \& \&\) isDifferentBy \(n(x 2: x 3)\)
isDifferentBy _(x:[_]) = True
```

(40\%) 3. a) Give a Haskell definition for the function iterate, which takes a function $f:: a->a$ and an item $\mathrm{x}::$ a as parameters, and returns the infinite list:

```
[x,fx,f(fx),f(f(fx)),\ldots.].
```


Answer

Qua iterate $:(a \rightarrow a) \rightarrow a \rightarrow[a]$
$7 \quad$ iterate $f x=x$: iterate $\frac{(F x: f}{f(f x)}$

iterate $::$ (a -> a) ->a $->[a]$
iterate $f x=x:$ iterate $f(f x)$

b) Give a Haskell definition for the infinite list reps, which has, as its $n^{\text {th }}$ item, a list composed of n copies of the integer n, for $n=1,2,3, \ldots$; thus, reps is the list:
[[1], [2, 2], [3, 3, 3], [4, 4, 4, 4], ...].
(as preparation for part (c), consider using iterate to solve this problem). (15\%)

c) Pascal's Triangle is an infinite triangular pattern of integers, in which each number on the boundary is 1 and each number in the interior is the sum of the two numbers diagonally above it:

Give a Haskell definition for the infinite list pascal, which has, as its $n^{\text {th }}$ item, a list of the numbers in the $n^{\text {th }}$ row of Pascal's Triangle, for $n=1,2,3, \ldots$; thus, pascal is the list:
$[[1],[1,1],[1,2,1],[1,3,3,1], \ldots]$.

